The ‘‘RED versus NIR’’ Plane to Retrieve Broken-Cloud Optical Depth from Ground- Based Measurements
نویسندگان
چکیده
A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the red (RED) and near-infrared (NIR) spectral regions is introduced. Because zenith radiance does not have a oneto-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances, such as normalized difference cloud index (NDCI), while largely removing nonuniqueness and the radiative effects of cloud inhomogeneity, can result in poor retrievals due to its insensitivity to cloud fraction. Instead, both RED and NIR radiances as points on the ‘‘RED versus NIR’’ plane are proposed to be used for retrieval. The proposed retrieval method is applied to Cimel measurements at the Atmospheric Radiation Measurements (ARM) site in Oklahoma. Cimel, a multichannel sun photometer, is a part of the Aerosol Robotic Network (AERONET)—a ground-based network for monitoring aerosol optical properties. The results of retrieval are compared with the ones from microwave radiometer (MWR) and multifilter rotating shadowband radiometer (MFRSR) located next to Cimel at the ARM site. In addition, the performance of the retrieval method is assessed using a fractal model of cloud inhomogeneity and broken cloudiness. The preliminary results look very promising both theoretically and from measurements.
منابع مشابه
Remote sensing of cloud properties using ground-based measurements of zenith radiance
[1] We have conducted the first extensive field test of two new methods to retrieve optical properties for overhead clouds that range from patchy to overcast. The methods use measurements of zenith radiance at 673 and 870 nm wavelengths and require the presence of green vegetation in the surrounding area. The test was conducted at the Atmospheric Radiation Measurement Program Oklahoma site duri...
متن کاملCloud – vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness
A new technique to retrieve cloud optical depth for broken clouds above green vegetation using ground-based zenith radiance measurements is developed. By analogy with the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Cloud Index (NDCI) is defined as a ratio between the difference and the sum of two zenith radiances measured for two narrow spectral bands in the visible...
متن کاملJp2.4 Retrieval of Cloud Optical Properties from Infrared Hyper-spectral Measurements: a New Methodology Based on Line-by-line Multiple Scattering Code and Measured Particles Size Distributions
1. ABSTRACT A new methodology to retrieve cloud optical properties using hyper-spectral infrared measurements is presented. The new method makes use of line by line multiple scattering (LbLMS) simulations to retrieve spectrally resolved cloud optical depths from spectral radiance data. The retrieval requires knowledge of the clear sky profile and cloud boundaries. The cloud microphysical proper...
متن کاملAccuracy of the independent pixel approximation for satelliteestimates of oceanic boundary layer cloud optical depthL
A theoretical study has been conducted on the eeects of cloud horizontal inhomogeneity on the retrieval of optical depth by remote sensing of visible reeectance. Forty-ve Landsat scenes of oceanic boundary layer clouds provide a sampling of real cloud elds, including trade cumulus, open and closed cell broken stratocumulus, and solid stratocumulus. The spherical harmonic discrete ordinate metho...
متن کاملMeasurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)
A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial paramete...
متن کامل